Lý thuyết bài 5, chương 1, SGK Chân trời sáng tạo tập 1 về phân thức đại số, hai phân thức bằng nhau và tính chất cơ bản của phân thức đại số
Phân thức đại số là gì? Điều kiện xác định của phân thức là gì? Định nghĩa hai phân thức bằng nhau và ví dụ như nào? Tính chất cơ bản của phân thức đại số là gì? bài viết này sẽ cho các bạn lời giải đáp.
– Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng , trong đó A, B là những đa thức và B khác đa thức không.
– A được gọi là tử thức (hay tử), B được gọi là mẫu thức (hay mẫu).
* Lưu ý: Mỗi đa thức được coi là một phân thức với mẫu thức bằng 1.
* Ví dụ: Chỉ ra các phân thức trong các biểu thức sau:
* Lời giải:
Trong các biểu thức trên các biểu thức sau là phân thức đại số:
Biểu thức không phải là phân thức đại số là: vì không phải đa thức.
Điều kiện xác định của phân thức là điều kiện của biến để mẫu thức B khác 0.
Khi thay các biến của phân thức đại số bằng các giá trị nào đó (thỏa mãn điều kiện xác định), ta nhận được một biểu thức số. Giá trị của biểu thức này được gọi là giá trị của phân thức đại số tại các giá trị đã cho của biến.
* Ví dụ: Cho các phân thức và
a) Viết điều kiện xác định của phân thức A và B.
b) Tính giá trị của phân thức A tại x = 0.
c) Tính giá trị của phân thức B tại x = 0, y = 1 và tại x = –2 và y = –2.
* Lời giải:
a) Điều kiện xác định của phân thức A là x – 1 ≠ 0 hay x ≠ 1.
Điều kiện xác định của phân thức B là x – y ≠ 0 (nghĩa là các giá trị của x và y thỏa mãn x – y ≠ 0).
b) Khi x = 0 (thỏa mãn điều kiện xác định), ta có:
c) Khi x = 0 và y = 1 thì x – y = –1 ≠ 0 thỏa mãn điều kiện xác định, ta có:
Khi x = –2 và y = –2 thì x – y = 0 nên điều kiện xác định không được thỏa mãn.
Vậy giá trị của phân thức B tại x = –2 và y = –2 không xác định.
Ta nói hai phân thức và bằng nhau nếu A . D = B . C.
Khi đó, ta viết .
* Ví dụ: Hai phân thức và có bằng nhau không? Tại sao?
* Lời giải:
Ta có:
• x.(4x2 – 1) = 4x3 – x;
• (2x + 1).(2x2 – x) = 2x.(2x2 – x) + 1.(2x2 – x)
= 4x3 – 2x2 + 2x2 – x
= 4x3 – x.
Nên có: x.(4x2 – 1) = (2x + 1).(2x2 – x)
Vậy hay A = B.
– Khi nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.
(C là một đa thức khác đa thức không).
– Khi chia cả tử và mẫu của một phân thức cho cùng một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.
(D là một nhân tử chung của A và B).
* Ví dụ: Dùng tính chất cơ bản của phân thức hãy giải thích vì sao hai phân thức bằng nhau:
a)
b)
* Lời giải:
a)
b)
* Nhận xét: Ở ví dụ trên, các phân thức bên phải đều đơn giản hơn các phân thức bên trái. Ta gọi các phép biến đổi ở trên là rút gọn phân thức.
* Lưu ý: Để rút gọn phân thức, ta thường thực hiện như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung.
Trên đây KhoiA.Vn đã trình bày nội dung lý thuyết Phân thức đại số là gì? Điều kiện xác định của phân thức là gì? Định nghĩa hai phân thức bằng nhau và ví dụ như nào? Tính chất cơ bản của phân thức đại số là gì? Toán 8 bài 5 SGK Chân trời sáng tạo tập 1 chi tiết, đầy đủ nhất. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công.