Bài viết liên quan

Ứng dụng của phương trình bậc nhất một ẩn, giải bài toán bằng cách lập phương trình? Toán 8 bài 2 Cánh diều Tập 2 C7

11:06:5514/11/2023

Lý thuyết bài 2, chương 7, SGK Toán 8 Cánh diều tập 2 về Ứng dụng của phương trình bậc nhất một ẩn, giải bài toán bằng cách lập phương trình.

Ứng dụng của phương trình bậc nhất một ẩn, giải bài toán bằng cách lập phương trình, biểu diễn 1 đại lượng bởi biểu thức chứa ẩn ra sao? bài viết này sẽ cho các bạn lời giải đáp.

1. Biểu diễn một đại lượng bởi biểu thức chứa ẩn

Trong thực tế, nhiều đại lượng biến đổi phụ thuộc lẫn nhau. Nếu kí hiệu một trong các đại lượng đó là x thì các đại lượng khác có thể biểu diễn dưới dạng một biểu thức của biến x.

* Ví dụ: Bạn An dành mỗi ngày x phút để chạy bộ. Viết biểu thị theo biến x:

a) Quãng đường (đơn vị: m) bạn An chạy được trong x phút, nếu bạn An chạy với tốc độ 150m/phút;

b) Tốc độ của bạn An (đơn vị: m/phút), nếu trong x phút bạn An chạy được quãng đường là 1800m.

* Lời giải:

a) Quãng đường bạn An đã chạy trong x phút là: s = v.t = 150x (m).

Vậy biểu thức biểu thị quãng đường bạn An đã chạy trong x phút là 150x (m).

b) Tốc độ của bạn An nếu chạy được quãng đường 1800m trong x phút là:

(m/phút).

Vậy biểu thức biểu thị tốc độ của bạn An nếu chạy được quãng đường 1800m trong x phút là (m/phút).

2. Các bước giải bài toán bằng cách lập phương trình:

• Bước 1. Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

• Bước 2. Giải phương trình.

• Bước 3. Kết luận

Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

* Ví dụ 1: Hiện nay ông hơn cháu 56 tuổi. Cách đây 5 năm, tuổi của ông gấp tám lần tuổi của cháu. Hỏi cháu hiện nay bao nhiêu tuổi?

* Lời giải:

Gọi tuổi của cháu hiện nay là x (tuổi), điều kiện x ∈ ℕ*.

Tuổi của ông hiện nay là: x + 56 (tuổi).

Cách đây 5 năm, tuổi của cháu là: x ‒ 5 (tuổi).

Cách đây 5 năm, tuổi của ông là: x + 56 ‒ 5 = x + 51 (tuổi).

Theo giả thiết, ta có phương trình: x + 51 = 8(x ‒ 5).

Giải phương trình:

x + 51 = 8(x ‒ 5)

x + 51 = 8x ‒ 40

x ‒ 8x = ‒ 40 ‒ 51

‒7x = ‒91

x = 13 (thỏa mãn điều kiện)

Vậy cháu hiện nay 13 tuổi.

* Ví dụ 2: Một tổ may áo theo kế hoạch mỗi ngày phải may 30 cái áo. Nhờ cải tiến kĩ thuật, tổ đã may được mỗi ngày 40 cái nên đã hoàn thành trước thời hạn 3 ngày và còn may thêm được 20 cái áo nữa. Tính số áo mà tổ đó phải may theo kế hoạch.

* Lời giải:

Gọi số áo tổ đó phải may theo kế hoạch là a (cái áo) (a ∈ℕ*)

Số áo tổ đó đã may trong thực tế là a + 20 (cái áo).

Thời gian tổ đó may theo kế hoạch là  (ngày).

Thời gian tổ đó may trong thực tế là (ngày).

Theo giả thiết, ta có phương trình:

Giải phương trình: 

4a = 3a + 60 + 360

4a ‒ 3a = 60 + 360

a = 420 (thỏa mãn điều kiện)

Vậy số áo tổ đó phải may theo kế hoạch là 420 cái áo.

Trên đây KhoiA.Vn đã trình bày nội dung lý thuyết Ứng dụng của phương trình bậc nhất một ẩn, giải bài toán bằng cách lập phương trình? Toán 8 bài 2 Cánh diều Tập 2 chương 7 chi tiết, đầy đủ nhất. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công. 

 

Đánh giá & nhận xét

captcha
Bài viết khác