Bài 7.37 trang 59 Toán 10 Kết nối tri thức Tập 2

16:01:1118/03/2024

Chi tiết lời giải Bài 7.37 trang 59 Toán 10 Kết nối tri thức tập 2 cực dễ hiểu giúp học sinh áp dụng giải Toán 10 tập 2 Kết nối tri thức đạt kết quả tốt.

Bài 7.37 trang 59 Toán 10 Tập 2 Kết nối tri thức:

Một cột trụ hình hypebol (H.7.36), có chiều cao 6 m, chỗ nhỏ nhất ở chính giữa và rộng 0,8 m, đỉnh cột và đáy cột đều rộng 1 m. Tính độ rộng của cột ở độ cao 5 m (tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).

Bài 7.37 trang 59 Toán 10 Tập 2 Kết nối tri thức

Giải bài 7.37 trang 59 Toán 10 Tập 2 Kết nối tri thức:

Chọn hệ trục tọa độ sao cho gốc tọa độ trùng với điểm chính giữa hai cột, trục Oy đi qua điểm chính giữa, hai bên cột lần lượt nằm về hai phía của trục tung (như hình vẽ).

Phương trình hypebol (H) có dạng:  (với a, b > 0). 

Giải bài 7.37 trang 59 Toán 10 Tập 2 Kết nối tri thức

Theo bài ra ta có: A1A2 = 0,8 m; AB = EH = 1 m.

Khoảng cách giữa HE và AB là 6 m.

(H) cắt trục hoành tại hai điểm A1, A2, ta xác định được tọa độ 2 điểm là: A1(− 0,4; 0) và A2(0,4; 0).

Thay tọa độ A2 vào phương trình (H) ta được: 

⇒ a = 0,4 (do a > 0).

Ta xác định được tọa độ điểm E là E(0,5; 3). 

(H) đi qua điểm có tọa độ E(0,5; 3) nên: 

⇔ b2 = 16 ⇒ b = 4 (vì b > 0).

Vậy phương trình (H) là:

 

Gọi F là điểm thuộc hypebol mà cột có độ cao 5 m. Ở độ cao 5 m thì khoảng cách từ vị trí F đó đến trục hoành là 2 m, tương ứng ta có tung độ điểm F là y = 2, ta cần tìm hoành độ của F. 

Thay y = 2 vào phương trình (H) ta có: 

⇔ x2 = 0,2 ⇔ x ≈ ± 0,45. 

Vậy độ rộng của cột là: 0,45 . 2 = 0,9 m (độ rộng là khoảng cách nên phải dương).

Đánh giá & nhận xét

captcha
Bài viết khác