Chi tiết lời giải Bài 8.23 trang 76 Toán 10 Kết nối tri thức tập 2 cực dễ hiểu giúp học sinh áp dụng giải Toán 10 tập 2 Kết nối tri thức đạt kết quả tốt.
Bài 8.23 trang 76 Toán 10 Tập 2 Kết nối tri thức:
Từ các chữ số: 1; 2; 3; 4; 5; 6.
a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?
b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3 ?
Giải bài 8.23 trang 76 Toán 10 Tập 2 Kết nối tri thức:
a) Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.
Vậy có = 120 số có ba chữ số khác nhau thỏa mãn.
b) Số chia hết cho 3 thì tổng các chữ số của số đó phải chia hết cho 3.
Ta có các bộ ba có tổng chia hết cho 3 là: (1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).
Mỗi bộ ba có 3! cách sắp xếp để được một số chia hết cho 3.
Vậy số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là:
8 . 3! = 48 (số).
Trên đây KhoiA.Vn đã hướng dẫn các em giải bài 8.23 trang 76 Toán 10 Tập 2 Kết nối tri thức. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công.
• Xem thêm giải Toán 10 Kết nối tri thức Tập 2