Chi tiết lời giải Bài 8.11 trang 71 Toán 10 Kết nối tri thức tập 2 cực dễ hiểu giúp học sinh áp dụng giải Toán 10 tập 2 Kết nối tri thức đạt kết quả tốt.
Bài 8.11 trang 71 Toán 10 Tập 2 Kết nối tri thức:
Có bao nhiêu số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau?
Giải bài 8.11 trang 71 Toán 10 Tập 2 Kết nối tri thức:
Gọi số có 4 chữ số cần tìm có dạng: và a, b, c, d ∈ A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, a ≠ 0, a ≠ b ≠ c ≠ d.
Để chia hết cho 5 thì d phải thuộc tập hợp {0; 5}, do đó có 2 cách chọn d.
• Trường hợp 1: d = 0.
Chọn a ∈ A \ {0}, a có 9 cách chọn.
Chọn 2 số b, c ∈ A \ {0; a} và sắp thứ tự chúng, nên có cách chọn.
Vậy có: 9 . 56 = 504 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 0.
• Trường hợp 2: d = 5.
Chọn a ∈ A \ {0; 5}, a có 8 cách chọn.
Chọn 2 số b, c ∈ A \ {5; a} và sắp thứ tự chúng, nên có cách chọn.
Do đó có: 8 . 56 = 448 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 5.
Vì hai trường hợp là rời nhau, vậy theo quy tắc cộng có 504 + 448 = 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau.
Trên đây KhoiA.Vn đã hướng dẫn các em giải bài 8.11 trang 71 Toán 10 Tập 2 Kết nối tri thức. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công.
• Xem thêm giải Toán 10 Kết nối tri thức Tập 2