Tổng hợp Lời giải bài 8.14 trang 78 Toán 11 Kết nối tri thức Tập 2 ngắn gọn, chi tiết giúp học sinh áp dụng giải Toán 11 tập 2 Kết nối tri thức dễ dàng đạt kết quả cao.
Bài 8.14 trang 78 Toán 11 Tập 2 Kết nối tri thức:
Có hai túi mỗi túi đựng 10 quả cầu có cùng kích thước và khối lượng được đánh số từ 1 đến 10. Từ mỗi túi, lấy ngẫu nhiên ra một quả cầu. Tính xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5.
Giải bài 8.14 trang 78 Toán 11 Tập 2 Kết nối tri thức:
Gọi A là biến cố: “Hai quả cầu lấy ra không có quả cầu nào ghi số 1”,
A1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 1”,
A2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 1”.
Ta có A = A1A2. Hai biến cố A1 và A2 độc lập nên P(A) = P(A1) . P(A2).
Lại có P(A1) = P(A2) = 9/10 = 0,9.
⇒ P(A) = (0,9)2.
Gọi B là biến cố: “Hai quả cầu lấy ra không có quả cầu nào ghi số 5”,
B1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 5”,
B2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 5”.
Ta có B = B1B2. Hai biến cố B1 và B2 độc lập nên P(B) = P(B1) . P(B2).
Lại có P(B1) = P(B2) = 9/10 = 0,9.
⇒ P(B) = (0,9)2.
Gọi E là biến cố: “Trong hai quả cầu lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5”.
Ta có E = A ∪ B.
Theo công thức cộng xác suất ta có P(E) = P(A) + P(B) – P(AB).
Ta có AB là biến cố: “Hai quả cầu lấy ra không có quả nào ghi số 1 và ghi số 5”.
Gọi H1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 1 và số 5”,
H2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 1 và số 5”.
Ta có AB = H1H2. Hai biến cố H1 và H2 độc lập nên P(AB) = P(H1) . P(H2).
Lại có P(H1) = P(H2) = 8/10.
⇒ P(AB) = (0,8)2.
⇒ P(E) = P(A) + P(B) – P(AB) = (0,9)2 + (0,9)2 – (0,8)2 = 0,98.
Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là 0,98.
Trên đây KhoiA.Vn đã hướng dẫn các em giải bài 8.14 trang 78 Toán 11 Kết nối tri thức tập 2. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công.
• Xem thêm giải Toán 11 Kết nối tri thức tập 2