Tổng hợp Lời giải bài 7.13 trang 43 Toán 11 Kết nối tri thức Tập 2 ngắn gọn, chi tiết giúp học sinh áp dụng giải Toán 11 tập 2 Kết nối tri thức dễ dàng đạt kết quả cao.
Bài 7.13 trang 43 Toán 11 Kết nối tri thức Tập 2:
Cho điểm S nằm ngoài mặt phẳng (P), có hình chiếu H trên (P). Với mỗi đểm M bất kì (không trùng H) trên mặt phẳng (P), ta gọi đoạn thẳng SM là đường xiên, đoạn thẳng HM là hình chiếu trên (P) của đường xiên đó. Chứng minh rằng:
a) Hai đường xiên SM và SM' bằng nhau khi và chỉ khi hai hình chiếu HM và HM' tương ứng bằng nhau;
b) Đường xiên SM lớn hơn đường xiên SM' nếu hình chiếu HM lớn hơn hình chiếu HM'.
Giải bài 7.13 trang 43 Toán 11 Kết nối tri thức Tập 2:
Ta có hình vẽ sau:
a) Có H là hình chiếu của S trên mặt phẳng (P) nên SH ⊥ (P),
⇒ SH ⊥ HM, SH ⊥ HM'.
- Giả sử SM = SM'.
Xét tam giác SHM vuông tại H, có SM2 = SH2 + HM2
Xét tam giác SHM' vuông tại H, có SM'2 = SH2 + HM'2.
Mà SM = SM' nên HM = HM'.
- Giả sử HM = HM'.
Xét tam giác SHM vuông tại H, có SM2 = SH2 + HM2
Xét tam giác SHM' vuông tại H, có SM'2 = SH2 + HM'2.
Mà HM = HM' nên SM = SM'.
Vậy hai đường xiên SM và SM' bằng nhau khi và chỉ khi hai hình chiếu HM và HM' tương ứng bằng nhau.
b) Trên tia HM lấy điểm N sao cho SN = SM' suy ra HN = HM'.
Mà SM > SM' nên SM > SN
⇒ HM > HN hay HM > HM'.
Trên đây KhoiA.Vn đã hướng dẫn các em giải bài 7.13 trang 43 Toán 11 Kết nối tri thức Tập 2. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công.
• Xem thêm giải Toán 11 Kết nối tri thức tập 2