Chi tiết lời giải Bài 9.12 trang 69 Toán 7 Kết nối tri thức tập 2 cực dễ hiểu giúp học sinh áp dụng giải Toán 7 Kết nối tập 2 chính xác và đạt kết quả cao.
Cho điểm M nằm bên trong tam giác ABC. Gọi N là giao điểm của đường thẳng AM và cạnh BC (H.9.18).
a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB.
b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB.
c) Chứng minh MA + MB < CA + CB.
a) Áp dụng bất đẳng thức tam giác vào ∆MNB có:
MB < MN + NB do đó MA + MB < MA + MN + NB.
hay MA + MB < NA + NB.
b) Áp dụng bất đẳng thức tam giác vào ∆NAC có:
NA < CA + CN do đó NA + NB < CA + CN + NB.
hay NA + NB < CA + CB.
c) Vì MA + MB < NA + NB và NA + NB < CA + CB nên
MA + MB < NA + NB < CA + CB.
⇒ MA + MB < CA + CB.
Trên đây KhoiA.Vn đã hướng dẫn các em giải bài 9.12 trang 69 Toán 7 Kết nối tri thức Tập 2. Nếu có câu hỏi hay góp ý các em hãy để lại bình luận dưới bài viết nhé, chúc các em thành công.
• Xem thêm giải Toán 7 Kết nối tri thức Tập 2